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The behavior of a heavy tagged intruder immersed in a bath of particles evolving under ballistic annihilation
dynamics is investigated. The Fokker-Planck equation for this system is derived and the peculiarities of the
corresponding diffusive behavior are worked out. In the long time limit, the intruder velocity distribution
function approaches a Gaussian form, but with a different temperature from its bath counterpart. As a conse-
quence of the continuous decay of particles in the bath, the mean-squared displacement increases exponentially
in the collision per particle time scale. Analytical results are finally successfully tested against Monte Carlo

numerical simulations.
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I. INTRODUCTION

In recent years, there has been some interest for systems
where particles annihilate ballistically [ 1-8]. In these studies,
the model considered consists of an ensemble of hard par-
ticles which evolve freely until a binary encounter, which
leads either to the annihilation of the colliding partners with
probability p, or to an elastic collision with probability 1
—p. For this probabilistic annihilation model, there are no
collisional invariants, and numerical simulations have shown
that for a broad class of initial conditions, the system reaches
a homogeneous state in which all the time dependence of the
one-particle distribution function is encoded in the density
and temperature (defined as the second velocity moment of
the distribution function) [4,5]. This is the so-called “homo-
geneous decay state.” Such a behavior resembles the one of
granular fluids (see [9] and references therein) where, if the
system is stable, it evolves into a homogeneous cooling state,
in which all the time dependence is borne by the granular
temperature (in this case the density is conserved) [10]. For
the annihilation model, the hydrodynamic equations have
been derived using the Chapmann-Enskog method [11] by
the usual assumption of the existence of a “normal solution,”
whose space and time dependence occurs only through the
hydrodynamic fields [6]. Recently, the hydrodynamic equa-
tions linearized around the homogeneous decay state have
been derived relaxing such an assumption [12]. Nevertheless,
it must be assumed that there is scale separation, i.e., that the
spectrum of the linearized Boltzmann collision operator is
such that the eigenvalues associated to the hydrodynamic
excitations are separated from the faster “kinetic eigenval-
ues.” Although this property is valid for elastic collisions
[13], it has not been proven for the probabilistic ballistic
annihilation model in general, but only for Maxwell mol-
ecules [14] and for p smaller than a given threshold [12].

The objective of this paper is to study the simplest trans-
port process in this system in which we can rigorously prove
that there is scale separation. We will consider a tagged par-
ticle in a fluid in the homogeneous decay state, but collisions
between the tagged particle and the particles of the fluid will
be always elastic. The equation for the tagged particle is the
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Boltzmann-Lorentz equation [13,15] which depends on the
one-particle distribution function of the bath. In the limit of
asymptotically large relative mass for the tagged particle,
this equation reduces to a Fokker-Planck equation which de-
pends on the time-dependent density and temperature of the
bath. Due to the structure of this equation, we can prove that
there is scale separation and that, in the long-time limit, the
velocity distribution function of the tagged particle ap-
proaches a Gaussian distribution but with a temperature that
differs from that of the bath. A similar breakdown of equi-
partition has been reported for a heavy particle in a granular
bath [17-21], a problem that can be mapped onto an elastic
situation [22], at variance with the situation under scrutiny
here. We also study the diffusion of the heavy particle and
identify the diffusion coefficient as a Green-Kubo formula in
terms of the velocity autocorrelation function. Finally, we
perform Monte Carlo numerical simulations in order to test
our theoretical results.

II. FOKKER-PLANCK EQUATION

We consider a tagged particle of mass m and diameter o
immersed in a low-density gas. This gas is composed of hard
spheres or disks of mass m, and diameter o, which move
ballistically until one particle meets another one; such binary
encounters lead to the annihilation of the colliding partners
with probability p or to an elastic collision with probability
1-p [1-5,8]. Collisions between the particles of the gas and

the tagged particle are always elastic.

A. From Boltzmann-Lorentz to Fokker-Planck

The evolution equation for the probability density
F(r,v,t) of the tagged particle is the Boltzmann-Lorentz
equation [13,15]

(aﬁt"'v'V>F(1',V’f)=J[r’V’tF’f]’ M

where the collision operator is given by
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- J dv, f doO(g- 6)(g- &)

X{F(r,v*,0)f(r,v 1,t) F(r,v,0)f(r,v,,1)}.
(2)

Here f(r,v,?) is the distribution function of the particles in
the gas, d is the space dimension, g=v—v; is the relative
velocity, O is the Heaviside step function, & is a unit vector
pointing from the center of the gas particle to the center of

the tagged partlcle at contact and 0'0—
sional velocities v* and Vl are given by

. The precolli-

2A o n
vi=v-T (800 3)
VT=V1+ 1+A(g&)&a (4)

with A=m,/m the (gas/tagged particle) mass ratio.
We shall consider that the gas is in the homogeneous de-
cay state, so its distribution function has the scaling form [5]

n,(1)
d( )XH(CI) ¢ = UV_(lt)a (5)

where n,(t) is the number density of the gas,

Sfu(vy,t) =
v,(1)

(J—)” 2 is the thermal velocity of the particles in the gas,
and XH is an isotropic function depending only on the modu-
lus c=|e| of the rescaled velocity. It can be seen that the
homogeneous density and temperature obey the following
equations [6]:

on, (1)

_;t_ = _pvg(t)gnng(t)v (6)
T im0, @)

where we have introduced the collision frequency of the cor-
responding hard sphere fluid in equilibrium (with the same
temperature and density)

n T (0o 87l

=T T g T ) ®)

Here the dimensionless decay rates ¢, and {7 are functionals
of the distribution function and are approximately known in
the first Sonine approximation [4,7], see Appendix A. Equa-
tions (6) and (7) can be integrated to obtain the following
power laws for the decay of the density and temperature:

ny(1) = ng(O)[ 1 + v, (0)p(&, + {/2)] 24/ Co - (9)

T,(1) = T,(0)[1 + v,(0)p(&, + {r/2)e]247' oD - (10)

As a consequence, we get ngT” 2oct7! a simplified form of a
scaling relation common to all ballistically controlled pro-
cesses [16].

We next study the evolution equation for the tagged par-
ticle in the limit of large relative mass for the tagged particle.
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In the limit A<<1, it is possible to expand the collision op-
erator J[r,v,t|F,f] in powers of A. In Appendix B it is
shown that the leading order is

= % [A(V)F(r,v,0)]+ %%%Z[N(V)F(I‘,V,l)],

(11)

where
A(v,1) = Yt)v, N(v,t) =291, (12)

and [ is the second order unit tensor. The definitions of y and
7y are, respectively,

O = yldng(1),To()]a(p), (13)

1) = v[ng(0).T, (t)]a(p)b(p)%%- (14)

The friction coefficient y,(¢) is the same as for elastic bodies
and appears here as a function of the time-dependent density
n,(t) and temperature T,(7),

MAI/Z ()(2T(t)>1/20g ,

Yelng(1), To(1)] = D)

(15)

with a(p) and b(p) functionals of the distribution function of
the bath which depend only on the parameter p,

I'(dr2)

)= as D)

dey xy(cy)ey, (16)

2 f dchH(Cl)C?
b(p) = . (17)

d+1
deyxp(cy)e

In Appendix B, it is shown that the two terms on the right-
hand side of Eq. (11) are both of order ngvgag_lA, while the
other contributions in the Kramers-Moyal expansion are at
least of order ngvgag_lA3/2. In the same appendix, the ex-
pressions for a(p) and b(p) are evaluated to first order in a
Sonine expansion.

Taking into account the approximate expression for the
collision operator, Eq. (11), it is possible to write the
Boltzmann-Lorentz equation as a Fokker-Planck equation for
asymptotically small A,

Jd
[— +v- V]F(r,v,t)
ot

_ yeu)a(p)—[v bp) 02

}F (r,v,7). (18)
As in the inelastic case, the Einstein relation is violated due
to the fact that the distribution function of the bath is not
Maxwellian [18,23-25], which in turn implies that b(p) # 1.
On the other hand, if we suppose that the velocity of the
tagged particle obeys a Markov process and write the corre-
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sponding Fokker-Planck equation, in terms of the jump mo-
ments, limy,_,o(Av)/At and lim,,_o(Av?)/At, we obtain ex-
actly Eq. (18). Here (- --) means average over different noise
(bath) realizations.

B. Coarse grained fields and relevant scales

We now focus on the study of the hydrodynamic fields of
the tagged particle with the aid of the Fokker-Planck equa-
tion, Eq. (18). We define the mean velocity and the tempera-
ture of the Brownian particle as

u(t)=fdrfdvvF(r,v,t), (19)

gT(r):Jdrfdv%m(v—u)zF(r,v,t). (20)

Taking moments in the Fokker-Planck equation, we obtain
(see Appendix C)

&uﬁ_(tt) == ')’e(t)a(P)ll(t), (21)
M0 a0 -bpT0). (@2

As the function v, is a known functional of the gas density
n, and temperature 7, Eqs. (21) and (22) can be integrated,
which yields

u(t) = u(0)[ 1 + v,(0)p(¢, + {2)e] P/ Chte (23)

and

I(t)= %[1 + 1, (0)p(L, + Ly/2)f] 4wt

X[1+ v, (O)p(L, + Ly/2)e] 2 e2buetr) 24)

In the above equation, we have introduced the dimensionless
coefficient e,

_ phw() _ \2dg ( ) P s
2a(p) Y1) 2(d+2)ap)\ay) A’

that is not necessarily a small quantity.

As can be seen in Eq. (24), the behavior of the tempera-
ture depends strongly on the value of e. If e<1 the first term
of Eq. (24) dominates in the long time limit and the tempera-
ture of the tagged particle asymptotically decays with the
same power as the temperature of the gas [see Eq. (10)]. As
a consequence of Eq. (24) we have

7000
1= Ty(1)

, <1. (26)
1-€

On the other hand, if e> 1 the second term of Eq. (24) domi-
nates in the long time limit and the temperature decays
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slower than the gas temperature. One can understand this
behavior as follows: the parameter € is essentially the quo-
tient between the cooling rate of the gas and the relaxation
rate of the tagged particle’s temperature. If the former is
smaller than the latter, the tagged particle’s temperature is
eventually slaved by T, due to the second term of Eq. (22).
In the reversed case, the tagged particle’s temperature
evolves independently in the long time limit with a cooling
rate slower than that of the gas. It should be emphasized here
that in the expansion made in the previous section, we im-
plicitly assumed that T/7, remains finite because the coeffi-
cients A and N were expanded in powers of A" 2— (see Ap-
pendix B). Hence the Fokker-Planck equatlon for e>1 is
restricted to a time window in Wthh = is small enough. In
the following, we will only consider the case in which the
Fokker-Planck equation is valid for all times, i.e., the double
limit

P

o d-1
A—0, p—0, e<lI, E“<J> -,
(o) A

(27)
where the requirement of small p stems from A<1 and €
bounded from above. Hence, in order to be consistent with
this limit, we can substitute in the Fokker-Planck equation,
Eq. (18), the values of the coefficients, a(p) and b(p), by
their elastic limits

lima(p)=1, limb(p)=1, (28)
p—0 p—0

so that

|:£+V'V:|F(I',V,l) = ye(t)i[ + —gga—v}F(r v,1).
(29)

This equation is formally identical to the one obtained for an
elastic gas [15], except for the fact that the density and tem-
perature of the gas depend on time. This is a consequence of
the elastic limit to which we are restricted. In general, the
coefficients a(p) and b(p), Egs. (16) and (17), differ from
unity due to the non-Maxwellian character of the distribution
function of the bath, and the Einstein relation is violated.

In order to analyze this equation, it is convenient to intro-
duce the dimensionless time scale, *, proportional to the
number of collisions of the tagged particle,

=(1_€0)j dt,’ye(t’)7 (30)
0

where ¢, is defined by substituting {(p)/a(p) in Eq. (25) by
its p—0 limit:
—
V2 _g>d_1 p
=. 31
o= 16( A G

The dimensionless time scale * is related to the real time ¢
by
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% )62(1 éO) 1
=
vV, p(2§n 57)

log[l + Vg(o)p(gn + gT/z)t]

(32)

In this time scale, the evolution of the mean velocity and
temperature of the tagged particle are particularly simple,

u(r*) = u(0)e1-0) (33)
and
T(t*)  T(0) _,. 1 oy
Tg(t*)_Tg(O)e +1_€0(1—e ). (34)

Such predictions will be compared against numerical simu-
lations in Sec. IV. Let us also introduce the scaled distribu-
tion

1 £ ko gk ko L
F(r,v,t) = vZ(t)F (r,v*,r*), v¥= o)’ (35)
where
12 12
0 t)= (L) (Zl&) . (36)
1— 60 m

The function v (f) is introduced because with these defini-

tions we have
27T(t 172
0dt) [—( )} (37)
m

in the long time limit. In these variables the Fokker-Planck
equation (29) reduces to

1%
(% + Lo(t*)vE - V)F*(r,v*,t*) = App(v™)F*(r,v*,1%),
(38)

where we have introduced the standard homogeneous
Fokker-Planck operator

0 1 9
App(v*) = %<V* + 5%) (39)
and the function proportional to the mean-free path
vel1)
¢ (t*) - &7
T (- )0
dl'(d/2)

d-1
A‘”z(%) [ng(t*)o?_l]_].
0

(40)

= (1- 50)3/2417(‘1‘1)’2

Taking into account the definition of €, Eq. (25), we can
write explicitly €, as a function of the r* variable as

s o 2{,€
Lo(t*) =€(0)ec ", €'=—T—"—.
v 41 - &)
To sum up, we have obtained the evolution equation for
the distribution function of a tagged particle in a bath of
particles which annihilate, in the limit where the tagged par-
ticle is much heavier than the particles of the bath. There are

(41)
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some points in common with the elastic case, but also some
important differences. The homogeneous operator, whose
spectral properties are well-known [13,15], is exactly the
same, but the flux term is weighted by a function depending
on time and that diverges in the long time limit. This will
have important consequences in the study of diffusion as we
will see in the following section. Moreover, the equation is
not valid for all values of the probability p of annihilation in
the bath and masses of the tagged particle but, as already
mentioned, is limited to the double limit of Eq. (27), in
which ¢, <1.

III. LONG-TIME LIMIT SOLUTION OF THE FOKKER-
PLANCK EQUATION

In this section we investigate the long time behavior of
the solution of the Fokker-Planck equation, Eq. (38), starting
with an arbitrary initial condition. The objective is to study if
the tagged particle reaches some scaling state in the long
time limit and also to analyze how the particle diffuses.

A. Evolution towards a scaling form

As the Fokker-Planck equation is linear, it is convenient
to work in the Fourier space. The Fourier component of the
tagged particle distribution function is defined as

Fk(v*,t*):fdre‘ik'rF*(r,v*,t*), (42)
so that Eq. (38) yields Fy(v*,r*)

14
%Fk(v*,t*) =[App(v™) = ilo(t")k - v¥]F(vF,17).

(43)

The spectrum of the operator A zp(v*)—i€(r*)k-v* is known
[13,15]. The eigenvalues are

d
Ntk ) == STk OF - S, (@)
=1

where we have introduced the vector label n=(n,,...,ny),
with possible coordinate values n;=0,1,2,...,%. Hence, for
any initial condition, all the k-Fourier components decay and
only the k=0 remains. Moreover, as the eigenfunction asso-
ciated to the vanishing eigenvalue is the Maxwellian distri-
bution [13,15]

1 %2
XM(V*)ZWE_U , (45)
we obtain
F(Ev.0) = ——x(0%) (46)
r,v,t) — ———xyyv*
vi(l‘)XM

in the long time limit.

As a consequence, the tagged particle distribution func-
tion approaches a scaling form similar to Eq. (5) for the gas,
but with a different temperature [see Eq. (26)]. In this regime

061110-4



BROWNIAN MOTION UNDER ANNIHILATION DYNAMICS

the cooling rates of the bath and of the tagged particle are the
same and the temperatures are proportional. The situation is
similar to that of an elastic particle in a bath of inelastic
grains [18,19]. Nevertheless, there is an important difference:
in the inelastic case it has been proved that there exists an
exact mapping with an elastic system. On the other hand, in
our problem such a mapping fails due to the flux term which
explicitly depends on time.

B. Characteristics of diffusive motion

Our objective is to study the evolution equation for the
density of tagged particles, n(r,7)=[dvF(r,v,t) in a “mac-
roscopic” scale, i.e., in a long time and length scale com-
pared to the microscopic ones. The microscopic time scale is
defined by the slowest kinetic modes of App, i.c., the modes
with a single nonvanishing component, labeled by n;= §;; for
a given value of j in [1, d]. The microscopic length scale is
defined by the mean-free path of the tagged particle which is
proportional to €(¢*). The starting point will be the Fokker-
Planck equation for Fy, Eq. (43). As the generator of the
dynamics, the operator App(v*)—i€y(t*)k-v* does not com-
mute with its time derivative, it is not possible to write the
general solution of Eq. (43) in terms of the initial condition
in a simple way. Nevertheless, it is shown in Appendix D
that in the hydrodynamic limit, i.e., k€y(r*)<<1 for all the
time evolution and r*> 1, a closed equation for the Fourier
component of the density, n,=[dv*F\(v*,¥), is obtained,

Iy (t*)
or*

== Do[ko(r*) Pry (1), (47)

where the diffusion coefficient is

1

Dy=——.
7 2(1 + €9

(48)

This asymptotic behavior can be evaluated, taking advantage
of the scale separation (i.e., the mode with n=0 is isolated
from the other modes). From Eq. (47) we can derive the
evolution equation for the density

on(r,t*)
or*

= Dol3(t*)V2n(r,r). (49)

This is the equation we were looking for and it is only valid
in the “macroscopic” time and length scale. If we transform
this equation to real time with the aid of formula (30) we
obtain

? =D()V?n(r,1), (50)

{r
(1-€)lir+ (28, - {p el

where De(t)=21)§(t)/ v,(1) is the same as the diffusion coef-
ficient for elastic collisions except that it appears here as a
function of the time-dependent gas temperature and density.
As can be seen, for our system the diffusion coefficient D(z)
is far from being a trivial generalization of the elastic diffu-
sion coefficient.

D(t) =

D, (1),

PHYSICAL REVIEW E 78, 061110 (2008)

Now let us focus on the predictions of our diffusion equa-
tion. To this end, we introduce the mean-squared displace-
ment

(r (%)) = f drr’n(r,r*). (51)
If we consider an infinite system, we obtain from Eq. (49)
J 2 (g% )2
§<r (1)) = 2dDot (1), (52)
that will only be valid in the long time limit. It is straight-

forward to integrate Eq. (52), taking into account the explicit
formula for €,(¢*), Eq. (41). This gives

2e*r* _

(P (%)) = dDot3(0) —— (53)
€
or in real time
2
(1) = %;0(0){[1 + U O)p(L, + L2/ Gt _ 1),

(54)

As can be seen in Eq. (53), the diffusive behavior is com-
pletely different from its elastic or even inelastic counter-
parts, where it was found that the mean-squared displace-
ment is proportional to the number of collision per particle
[18,19]. The fact that the bath is losing particles significantly
affects this dynamics, and the mean-squared displacement
increases exponentially in the collision per particle scale. As
we will see in the following section, simulation results agree
well with our theoretical prediction. Roughly speaking, the
exponent 4¢,/(2¢,+{y) is close to 8d/(4d+1) (approxi-
mately 1.77 in two dimensions, and 1.84 in three dimen-
sions).

C. Diffusive behavior: An alternative derivation

In the remainder of this section, we show that, under a
plausible hypothesis, it is possible to rederive “a la Einstein”
the formula for the mean-squared displacement, Eq. (53).
This derivation has the merit of leading to a Green-Kubo-like
expression for the diffusion coefficient. We start by writing
the mean-squared displacement as

(1)) = f t dt’ J tdt”(V(t’) V(). (55)
0 0

Here, the position and the velocity of the tagged particle, r(z)
and V(r), are considered as a stochastic process and (---)
denotes an ensemble average over different trajectories. Let
us change the variables from #— ¢* and let us also introduce
the scaled velocity

w(t*) = (56)

o)

where v (1) is defined in Eq. (36). With these definitions we
have
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*

1 "
(F(r*)) = mfo d517;1(51)J0 dSz)’;l(Sz)

¥ ¥
X{(V(sy) - V(s,)) = €5(0) f ds, f dsye 175
0 0

X(w(sy) - wisa)), (57)

where we have used the definitions of #* and €,(0), Egs. (30)
and (41). Now, if we assume that the tagged particle is in the
scaled regime, i.e., the temperature is T,(¢*)/(1~-¢)) and that
the correlation function (w(s;)-w(s,)) is a function of s,
—s,, by integrating in the new variables S=(s;+s,)/2 and s
=s5,—5,, the following relation is obtained:

(%) € 1 f’*

ek m - d dS<W(S) : W(0)>e_€*s (58)

e 0

in the long time limit. This formula is the generalization of
the Einstein formula for the diffusion coefficient of a heavy
particle in a fluid in the homogeneous decay state. It relates
the asymptotic behavior of the mean-squared displacement
with the time integral of the autocorrelation function of the

velocity weighted by the exponential ¢™€%. So far we have
considered the Fokker-Planck equation as the equation for
the one-time probability distribution function. If we assume
that the velocity of the tagged particle is a Markov process,
then the Fokker-Planck equation is also the equation for the
conditional probability and we can evaluate easily the corre-
lation function (w(s;)-w(s,)). Taking into account Egs. (33)
and (36), we have

(wlsy) - wisz)) = 5ol (59)

By substituting this formula into Eq. (58) we rederive Eq.
(53) with the same diffusion coefficient D, that can be writ-
ten in the Green-Kubo form:

Dy= clz f i ds(w(s) - w(0))e <™. (60)

0

IV. DIRECT SIMULATION MONTE CARLO RESULTS

The objective of this section is to put to the test the main
results of the previous sections by means of the direct simu-
lation Monte Carlo (DSMC) method. More precisely, we will
analyze the temperature and mean velocity evolution, to-
gether with the tagged particle diffusion. We have performed
DSMC simulations of a system of N, hard disks of mass m,
and diameter o, which annihilate with probability p or col-
lide elastically with probability 1—p everytime two particles
meet. Bird’s algorithm [26] has been used. The parameters in
all the simulations were m,=1, o,=1, N,(0)= 10°, and
T,(0)=1. We have considered only one tagged particle in
each simulation that collides elastically with the surrounding
bath. The diameter of this particle has been set to unity (o
=1) and we have varied the value of its mass m. The values
of the probability of annihilation p of the particles in the bath

PHYSICAL REVIEW E 78, 061110 (2008)

1.5 T
1k > > A
tc)
'_
0.5 _
— m=20mg
— m=200m
0 ' -
0 100 200

FIG. 1. (Color online) Evolution of the temperature ratio as a
function of the number of collisions per particle 7 for a system with
p=0.01 and two values of the tagged particle’s mass, m=20m, (A
=1/20) and m=200m, (A=1/200). The dashed line is the theoret-
ical prediction given by Eq. (34).

have been p=0.1 and 0.01, and the results have been aver-
aged over 2 X 10* and 4 X 103 trajectories, respectively. For a
given value of p, we have performed a series of simulations
for different values of the mass of the tagged particle. Taking
due account of the constraint €,<<1, the value of the tagged
particle’s mass must be smaller than 10 for p=0.1 and 10
for p=0.01.

Figure 1 shows the evolution of the ratio 7/T, for a sys-
tem with p=0.01 and for two values of the tagged particle’s
mass, that is, m:20mg and 200mg, as a function of the num-
ber of collisions per particle, 7, defined as

1 (! 1 v
= — dt’ t' =—il*. 61
T 2f0 )= e 7, (61

The initial value of temperature of the tagged particle is
T(0)=0 for all the trajectories, since at r=0, the intruder has
a prescribed velocity. As we can see, in this scale, the evo-
lution to the stationary value of the ratio of the temperatures
is slower as we increase the mass of the tagged particle. This
implies that there are values of the tagged particle’s mass for
which the ratio of the temperatures will not reach its station-
ary value in the time of the simulation (for instance, the
number of particles in the bath for 7=200 is Ng21800,
which hinders correct statistical sampling). The theoretical
prediction in this time scale (dashed line) is obtained directly
from Eq. (34), taking into account Eq. (61). The agreement
between theory and simulations is good.

Similar simulations were performed with different values
of the tagged particle mass (m ranging from 15 to 100 for
p=0.1 and from 15 to 900 for p=107%). Since T,(0)=0, Eq.
(34) predicts

T .
b=(1-¢g)—=1-¢2". (62)
Tg

As can be observed in Fig. 2, all simulation data for & col-
lapse onto a single curve. The time scale #* can be calculated
from the scale 7 defined in Eq. (61). In the same vein, we can
obtain the stationary value of the temperature ratio, which is
plotted as a function of A=m,/m in Fig. 3; this validates our
theoretical analysis.
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FIG. 2. (Color online) Scaling function ® defined in the main
text as a function of reduced time ¢* for different systems with p
=0.1 and 0.01 and different values of the tagged particle’s mass.
The dashed line is the theoretical prediction of Eq. (62).

In order to probe—at least partially—the Gaussian nature
of the time dependent tagged particle velocity statistics, we
have measured the reduced fourth moment 4(v*)/[d(d
+2)(v*)?]. As can be seen in Fig. 4, where we have plotted
the results for p=0.1 and several values of A as a function of
the number of collisions per particle, 7, the value of this
quantity is in agreement with the Gaussian prediction (that is
unity) within the statistical uncertainties.

Consider next the mean velocity of the tagged particle,
u(r*). In order to study the decay of this quantity, we have
performed a set of simulations starting with a component of
the velocity field in the x direction when it is immersed in a
bath in the homogeneous decay state, u,(0). In Fig. 5, we
plot u,(*)/u,(0) as a function of */(1-¢,) for p=0.1 and
several values of m. In this time scale, the data for all values
of m collapse due to Eq. (33). In the inset, the same quantity
is plotted on a logarithmic scale. If the theoretical prediction
in Eq. (33) is verified, the above plot must lead to a straight
line with slope {,=1 (dashed line), where ¢, is the decay rate
of the mean velocity. On the other hand, ¢, can be fitted on
the logarithmic plot of the inset. Reporting the corresponding
measures in Fig. 6 against the mass ratio, it appears that the
theoretical prediction {,=1 is approached as A—0, as ex-
pected.

Finally, the accuracy of the prediction for the diffusion
equation has also been tested by measuring in DSMC simu-

1.4

T
1
|
'
1
|
1

T
+
;
\

@
E"Hz * .
= :

FIG. 3. (Color online) Stationary values of the temperatures
ratio for a system with p=0.01 and different values of the tagged
particle’s mass A=m,/m. Symbols are for the Monte Carlo data and
the dashed line shows the long time limit of Eq. (34).
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FIG. 4. (Color online) Reduced fourth moment of the tagged
particle velocity as a function of the dimensionless time 7 for p
=0.1 and different values of the tagged particle’s mass.

lations the mean-squared displacement of the tagged particle.
In contrast to the granular case phenomenology and as a
consequence of the continuous decay of particles in the bath,
the mean-squared displacement increases exponentially in
the r* scale, see Eq. (53). In Fig. 7 we have plotted the time
evolution of (r?) in the scale #* for a system with p=0.01 and
m=60m,. The dashed line is the theoretical prediction given
by Eq. (53) and shows good agreement with numerical data.
The same quantity, written in terms of the bath density, reads

2€e* ¥ 2
N NN -1 n,(0)
(r*(t*)) = dD£(0) = =B [n:(t*)z -11], (63)
where we have defined
dDy(5(0)
B="00 (64)

&

and we have taken into account that ng(t*)zng(O)e‘E*’*. It
then appears that the mean-squared displacement increases
linearly with ng(O)z/ ng(t*)z. This is in full agreement with
the simulation results, see the inset of Fig. 7. Such a plot
allows us to extract by linear fitting the coefficient B, which

1 T o B s —
st ]
0.8F 2 -2r 1
& 3f .
— Z, S,
o < -4f S
~0.6F 5 L N
3 0 1 2 3 4 5
= t/(1-e))
%
-
— 0.4} « m=15m -
= o m=20m
m=38mg
o m=60m
0.2 . m=80om’
. m=100m
SO s
0 1 1 et =P N,
0 1 2 3 4 5
*
/(1-¢,)

FIG. 5. (Color online) Mean velocity of the tagged particle as a
function of */(1—¢y) for a system with p=0.1 and several values
of the tagged particle’s mass. The dashed line is the theoretical
prediction given by Eq. (33). Inset: Mean velocity of the tagged
particle as a function of */(1-¢,) for a system with p=0.1 on a
logarithmic scale.
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FIG. 6. Decay rate of the mean velocity as a function of A for a
system with p=0.1. The symbols are from DSMC simulations and
the dashed line is the theoretical prediction.

can then be compared against the prediction of Eq. (64),
which explicitly reads

— d\?
16\"2d2771_d0'§(1_d)1_'(5)

B=- J (65)

2 HP 5 p
ng(O)p<— 16 + \yzA){lm \V2(4d - 1)A

where we have taken into account that oy=0,. Such a com-
parison is worked out in Fig. 8 and fully corroborates the
theoretical analysis, with again an improved agreement when
A decreases.

It would be also interesting to confirm our theoretical pre-
dictions with molecular dynamics simulations. In the low
density limit, it is expected to get similar results. In fact,
some simulations were performed finding qualitatively the
same behavior but with much more statistical inaccuracies.

V. CONCLUSIONS

In this paper, the diffusive behavior of a tagged intruder
immersed in a gas of particles undergoing ballistic annihila-
tion (i.e., which annihilate with probability p or scatter elas-
tically otherwise), has been analyzed. The collisions between
the tagged particle and the surrounding gas are elastic. Some

1.5x10° L S
1.5x10 —T T |
e !
22 |
1.0x10°F B J
<> o J
51 .
1.0><106’ 5.0x10 ; ,
4
" 1 "
<« 005 5000 10000 §
In,O)/ny(t)F* i
5 H
5.0x10°[ 7 7]
0.0 L T 1 L 1

0 2.5 5 75 10 125

FIG. 7. (Color online) Mean-squared displacement for a system
with p=0.01 and m=60m, as a function of ¢*. The dashed line is the
theoretical prediction, Eq. (53). Inset: same quantity as a function of
ng(O)z/ ng(t*)z. The dashed line is the theoretical prediction of Eq.
(63) where B follows from Eq. (65).
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similarities are found between our system and the elastic or
inelastic case [15,18], but, on the other hand, important dif-
ferences arise as a consequence of the continuous decay of
particle number in the system.

We start from the Boltzmann-Lorentz equation for the dis-
tribution function of the tagged particle, which is valid, in
principle, for arbitrary mass of the tagged particle. In the
limit of a very massive tagged particle, a Fokker-Planck
equation for the distribution function is derived by means of
a systematic expansion in the mass ratio A. Our approach
holds in the limit A<<1, but we additionally have the more
stringent condition that the parameter introduced in Eq. (25),
€x &, must be smaller than unity. Analysis of the Fokker-
Planck equation leads to predictions for the temperature ra-
tio, the decay rate of the mean velocity of the tagged particle,
and the diffusion coefficient. As in the inelastic case [18], the
theory predicts that the ratio between the temperatures of the
tagged particle and the gas is constant in the long time limit
as a consequence of equilibrating cooling rates. When repre-
sented in the appropriate time scale, which is proportional to
the number of collisions experienced by the tagged particle,
temperature ratios collapse for all values of A and p consid-
ered. Likewise, the mean intruder velocity (averaged over
bath realizations) decays exponentially. The dynamics of the
distribution function of the tagged particle is governed by a
Fokker-Planck operator of which spectral properties are
known. More specifically, as the eigenvalues of this operator
are nonpositive, the distribution of the tagged particle ap-
proaches a Gaussian in the long time limit and admits a
scaling form similar to the one for the distribution function
for the particles in the gas but with a different temperature.
At variance with the situation of an elastic intruder in a bath
of inelastic particles [22], there is apparently no mapping
between our problem and a well-chosen elastic system. A
unique vanishing eigenvalue is responsible for the slow dif-
fusive behavior of the tagged particle density. The corre-
sponding diffusion equation has been derived in the hydro-
dynamic limit by means of a projector decomposition, which
yields an explicit expression for the diffusion coefficient.
From a different point of view, the expression for the mean-
squared displacement has also been derived “a la Einstein.”
Following this route, the diffusion coefficient is expressed as
a Green-Kubo formula in terms of a weighted time integral
of the tagged particle velocity correlation function. This pro-
vides a more physical perspective on the results derived from
the projector method. As already mentioned, the mean-
squared displacement for this system does not increase lin-
early in the collision per particle time scale, as is the case in
the elastic and inelastic cases. This different behavior is due
to the time dependent bath density. In the elastic case, both
the temperature and the density do not depend on time. In an
inelastic system [18,19], the time dependence goes through
the temperature and could be absorbed in the collision per
particle time scale, which turns out to be impossible in our
system where the mean-free path €(7*) is an increasing func-
tion of time.

Finally, our analytical results have been tested by numeri-
cal simulations, and a very good agreement has been re-
ported for all ranges of parameters considered. As expected,
the agreement is all the better as A is smaller. In summary,

061110-8



BROWNIAN MOTION UNDER ANNIHILATION DYNAMICS

PP— | |
1.5+ 4:— _
e | |
4k || _
C 1
@ \ -
_‘\_ P i =
0.5F S ;
o | |
0 o 0.06 0.08

(@)

PHYSICAL REVIEW E 78, 061110 (2008)

12 . | |
g . R
1ot R _
s [ 7
Ncc’ 8‘:' _7_:" _
L
6::; _
="
e
0 oo 0.06 0.08

0.04
(b) A

FIG. 8. Values of Bng(O) as a function of A for systems with p=0.1 (left) and p=0.01 (right). The dashed line is for the prediction of Eq.

(65).

the work reported here provides an example of the accuracy
of hydrodynamics to describe a system in which there are no
conserved quantities in binary encounters (no collisional in-
variants).
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APPENDIX A: SOME USEFUL APPROXIMATIONS

For the sake of completeness, we provide here the ap-
proximate expressions for the density and temperature decay
rates that are relevant for explicit computation of several of
the quantities discussed in the main text. They have been
obtained from a truncated Sonine expansion (Sonine polyno-
mials being particular types of Laguerre polynomials, par-
ticularly convenient for kinetic theory calculus) [4—6].

_M(l L) (A1)
gn_ 4 a216 s
; _d+2<1+ 8d+11> (A2)
T= g4 “e )
where
8(3-2\2
( \2)p (A3)

ap = — = .
(4d+6-\2)p+8y2(d-1)(1-p)

APPEDNIX B: FROM THE BOLTZMANN-LORENTZ
EQUATION TO THE FOKKER-PLANCK EQUATION

In this appendix we expand the collision operator, Eq. (2),
in series of A. We start by multiplying the collision operator

by a generic function H(v) and integrate in velocity space

f dvH(v)J[r,v,t

F,f]:(ro_lfdvjdVlH(v)fd&®(g~&)

X(g - )F(VF(v)) = FWf(v))].
(B1)

The above expression can be written

f dvH(V)J[r,v,1|F,f]

=af! f dv f dviF(V)f(vy) f do0(g- o)(g- )

X[H(v-6v)-H(v)], (B2)
where we have introduced
2A
ov=—-—(g- )0, B3
V=T, A(g o) (B3)

which is the increment of the tagged particle velocity due to
collisions with a particle of the bath (it should be remem-
bered that g=v—v,). Equation (B2) essentially tells us how
the function H varies due to collisions. If we admit that A is
small enough, we can expand H(v—6v) around v in powers
of 6v, keeping only the lower orders
aH(v)] 1 { ) }

< OV+ | ——H(V) |:6vdv.

ov 2[ dvov

H(v—-6v)=H(v) - [

(B4)

If we introduce expansion (B4) in Eq. (B2) we obtain

f AvH)I[r.v.1|F.f] = f dVH(V){%[A(V)F(V)]

19 0
+-———INWV)F(v)]| [, B5

2&vav[ (V)F(v)] (B5)
where we have introduced

DA d-112 i-1
%do J av,f(vi)gg, (B6)
+3>
2

A(v) =
(1 +A)F(
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2A | #ldD2 g_
N(V)=|:1+A] F(ﬂ) fdvlf(vl)
2
d+3 3 1
X[ 2; g31+58<gg—3g31>} (B7)

In the last expression I is the unit tensor. As H(v) is a generic
function of v, we can compare Egs. (B1) and (B5), and we
obtain that the collision operator can be written as

_ % [AWFM] + %%%:[N(vwv)].

(B8)

We next specify A and N within the scaling form provided
by the homogeneous decay state of the bath. This will lead us
to identify the remaining A dependence in these coefficients
and to simplify the functional dependence in the tagged par-
ticle velocity. To this end, we introduce the dimensionless
velocities

__v _Yi
o T (B9)

where v,(1)=("}:"")" and vo(1)=(22)"2, with T(1) the tem-
perature of the tagged particle and T,(¢) the temperature of

the suspending gas. The relative VCIOClty g=v-v; can be
written as

g=v (){T(())} A¢ - v, (D)e;. (B10)
A formal expansion in (7/T,)A leads to
A(v,t) = v(t)v, N(v,t)=2%(r)l. (B11)
The definitions of y and % are, respectively,
(1) = ¥e[ny(1), T (1) Ja(p) (B12)
510 = 7m0, b 2, (B13)

where v,(1) is the same friction coefficient as for an elastic
system at the corresponding density and temperature,

47T(d_])/2 2T (t) 12 d—
2 A2, g() ot .

Yelno(1), T,(1)] = ar @)

(B14)

and a, b are functionals of the distribution function of the
bath which depend only on the parameter p,

I'(dr2)

alp) = ————— | deixulcier,

I'l(d+ 1)/2] (B15)

5 f deyxp(cy)ey
b(p) = . (B16)

d+1
deyxy(cy)cy
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These coefficients have been evaluated in the first Sonine
approximation and depend very weakly on p,

a(p) = 24P ZZ@) , (B17)
8+ 3ay(p)
b(p) = S—ap) (B18)

where a,, defined in Eq. (A3), is the gas velocity distribution
kurtosis (a Gaussian ansatz would amount to setting a,=0).
By dimensional analysis and taking into account the explicit
formulas for A and N, Eq. (B11), we can see that the two
terms we have considered in the expansion of the collision
operator, Eq. (B8), are of order ngv go'g"lA, while the other
terms in the Kramers-Moyal expansion are at least of order

vgag_lA3/ 2. Hence we can conclude that the leading order
contribution in A of the collision operator is actually the one
written in Eq. (B3).

APPENDIX C: EQUATIONS FOR THE VELOCITY AND
TEMPERATURE OF THE TAGGED PARTICLE

In this appendix we derive the equations for the mean
velocity and temperature of the tagged particle. Taking mo-
ments in the Fokker-Planck equation, Eq. (18), we obtain for
the velocity

‘9““) f dr J dvv{—(v V)+ye(t)a(p)— v

+a(p)b(p)—&ye(t ’ }F(r v,1).

(C1)
By integration we have
qu(t d
MO _ | e [ avviatp) L rev0) - (©
- f dr f dvy,(t)a(p)vF(r,v,z) (C3)
==Y (Na(p)u(t). (C4)
Consequently, the equation for the mean velocity is
ou(r)
— == Ya(p)u(?). (C5)
ot
Taking into account the definition of temperature,
d 1 )
ET(t) = | dr dvzm[v —u()]*F(r,v,1)
! 2_ .2
= | dr dVEm[U —u*(1)]F(r,v,1), (C6)

we can write
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~— ()——{ fdrfdvsz(er) 2u(z) - ()

(C7)

In order to evaluate the first term on the right-hand side, we
make use of the Fokker-Planck equation:

J
—ferdvsz(r,v,t)
ot

=—2ye(t)a(p)fdrfdvsz(r,v,t)

+ 25Ty alp)bip). (C8)

Taking this formula and the equation for the velocity into
account, we obtain

d &T(t)

2 ot (©9)

= dy,(Da(p)[T(t) = b(p)T,(1)].
APPENDIX D: DIFFUSION EQUATION

In this appendix we derive the diffusion equation for the
tagged particle’s density. The starting point is the Fokker-
Planck equation (43),

R 1) = [App(0®) — i€k - VFIF(VE, 1),

(9 %
(D1)
in which we introduce the two projectors
Pg(v¥) = (Qxn(v¥)g (VD xm(vY), (D2)
P g(v)=(1-P)g(v¥). (D3)

Here, we have introduced the Maxwellian distribution,
xu(v*), which is the eigenfunction of Ayp associated with
the 0 eigenvalue and we have used the scalar product defined
as

(F(v9)lg(v)y = f dvixy (VO (v)g(vF),  (D4)

f" being the complex conjugate of f. In a next step, we de-
compose the function Fy in PFy and P Fy, and write the
equations for these two quantities,

d
[ﬁ + ilo(1*) Pk - v* - PAFP]PFk =~ ilo(i*)Pk - V*P  F,

(D5)

J
[F‘l’lgo(t*)P k- V PLAFP:|PLFk
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We are interested in obtaining a closed equation for PFy in
the hydrodynamic limit. To achieve this goal, we formally
solve the equation for P | Fy,

P, F (V5 1%) = Go(%) F (v¥,0) — f dt*' G (£ = £*7)
0
X P ity(t* )k - VEPF(VF,1*'), (D7)

where the operator G (1*—1*") is defined as

d S .
%Gt*'(ﬁ —t*") =P [App(v¥) = il(t*)k - v¥]

XP |G (1 = 1), (D8)

with G,«(0)=1. In the long time limit, the term associated to
the initial condition vanishes and we have

£
P F (v*,r*)=— f dr* G (r* = t*")P i€y (r* — 1)
0

XK - V*PF (V¥ 5 = 1*'). (DY)

In order to obtain the diffusion equation to order k, we only
need P, Fy to order k, so we write the expression for
G (t*=1*") to leading order,

Gpo_pr (1) = P 1 ARPP LI (D10)

We then have

t*

k!
PJ_Fk(V*,t*) ~_ f d[*’ePLAFPPJ_f* P
0

Lot = 1)
XK - V*PF (V¥ 1 = *")
t
__ €0(t*)f dt*/ePLAFPPLt*’—e*t*’
0

XP K- V*PF(v*,t* = 1*'), (D11)

where we have used that £,(+*)~e€"". We subsequently
have to relate PF(v*,r*—r*") with PF,(v*,r*). To be con-
sistent with the hydrodynamic approximation, this is done to
leading order

1) = e—PAFPPt*’PFk(V*’t*)

= O (VIR ) xu(vF). (D12)

PFE (V¥ r* -

Now we can write the equation for the Fourier transform of
the density, n(1*),
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g ol [
1) == k()P J dviy?

[*
. J dt*,EPLAFPPLZ*,E_sxl*,PJ_V*XM(V*)I’Zk(t*) )
0

(D13)
In other words,
9

= (D14)

(1) = = Do[€o(r*)kPny (%),

where

PHYSICAL REVIEW E 78, 061110 (2008)

1 a ,
Dy= 7 J dv*v* - f drt! e PAAFPP =€ Py (vE),
0

(D15)

Finally, we can evaluate D, exactly since v;‘xM(v*) is an
eigenfunction of App with eigenvalue \|=-1,

l 1
21+ €

(D16)

[*
Dozfdv*v;kf dt*’e(‘l‘E*)’*’Plv;‘)(M(v*):
0
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